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A Abstract

This report discusses some further developments of an analytical
solution to the 3-D Griffith crack problem. The analysis shows the
stresses at the corner points to be singular of the order (1/2 + 2v).
Moreover, the stress boundary conditions at the plate faces are shown to

be proportional to (h - z), at the upper face, and to (h + z), at the

P P —

lower face.
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Introduction

A major debility in current fracture mechanics work is the ignorance of

P | TR LU

the effects of thickness on the mechanism of failure. For example, the

common experimental observation of a change from ductile failure at the edge

to brittle fracture at the center of a broken sheet material has so far
defied analysis. Moreover, fracture toughness of a material is presently
assumed to be constant.\\Xgﬁmgggjpegripgﬁgqp}es prescribe two diff?rentQEL_Z; ,/91225?
values for thin and thick plates. More frustrating yet is the fact that
there exists no precise definition as to what represents a 'thin' or a
"thick' plate. Obviously, the concept of fracture toughness, as it is
presently defined, is an inappropriate parameter to use for the prediction
of failures due to fracture. VYet an orderly theoretical attack on the
probler can provide important guidance to these and other phases of
fracture research. The most potent mathematicai tool for this attack is the
Tinear theory of infinitesimal elasticity as applied to a cracked plate of
finite thickness. Although this theory cannot include the nonelastic
behavior of the material at the crack tip per se, it can evince many
characteristics of the actual behavior of a cracked plate, including those
due to thickness.

For example, such information could be valuable to the understanding
and the solution of the corresponding 3-D elastoplastic problem. While it is
true that this theory cannot give us the exact stress state at a point in the
interior of the shear lip, it can, however, prescribe fairly accurately the
shear 1ip envelope. Thus the theory of linear elasticity is a logical

L 4
fountainhead for detailed theoretical study.

*It is for these reasons that a National Workshop on Three-Dimensional R
Fracture Analysis, held at Battelle on April 26 - 28, 1976, identified this 3
as one of the Benchmark problems in the field of Fracture Mechanics. y




The mathematical difficulties, however, posed by three-dimensional crack
problems are substantially greater than those associated with plane stress
or plane strain. As a result, there exist in the literature very few
analytical papers that deal specifically with the three-dimensional stress
character at the base of a stationary crack.* Simultaneously, in the last
two decades, numerous attempts have been made to obtain a finite element
solution by very capable researchers. Unfortunately, they too experienced

i
difficulties and their respective results were contradictory.

Review of author's past work. Ef
In 1973, Folias, using a method developed by the Russian elastician j

Lur'e [1] and the application of Fourier Integral Transforms, constructed !

a solution [2] to Navier's equations for a mixed boundary value problem,

that of a 3-D Griffith crack (see fig. 1). The integral representations i

were subsequently expanded asymptotically in the inner layers of the plate

and the displacement and stress fields were found to be:

(i) Displacements:

(¢) . = &, 1 1 e, m- 2 ¢ ?
u = 5 35 X 5+ X 5 VY > { == cos (2) }
(1 '-h-) (1+'ﬁ) a

+-]Zsin¢sin ($)1 + 0(c") (1)

3

*
For a historical discussion see reference [3].

**Refer to proceedings of Workshop on Three-Dimensional Fracture Analysis
held at Battelle, 1976.
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(c) . - A ] 1 .
Tyz “veg o ~ 2 )
(1 - F) (1 + F)
v %; { % sin ¢ cos (%-)} + 0(e") (8)
oy ] 1
TXZ(C) =vogp ! 2T L 2T )
(1 - F) (1 + F)

VS (- 20) cos (§)4gsingsin($)1+0 (&), (9)

where % is a function of Poisson's ratio v and c¢/h.

The above solution reveals the following important characteristics,
which are applicable orly in the inner layers of the plate:

(1) the stresses possess the usual 1//¢ singularity,

(2) the stresses possess the usual angular distribution,

(3) the stress intensity factor KI is a function of z,

(4) exact plane strain conditions exist only on the plane z = 0,

*
(5) a pseudo plane strain state exists and the equation

+c) (10)

(6) as the plate thickness 2h — «, the plane strain solution is
recovered,
(7) as Poisson's ratio v — 0, the plane stress solution is

recovered,

*The reader should note that the stresses are functions of z, therefore
the term 'pseudo’ plane strain.
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and also serve as check points for the validity of the solution, at least
as v— 0 and as h — =,

One of the great advantages of an analytical expression is that it can
easily be verified as to whether it represents a solution to a problem by
direct substitution into the governing equations and the appropriate
boundary conditions. The reader should note that the above displacement
field satisfies all Navier's equations and that the stress field satisfies

the following boundary conditions

c) o [(c) . ) -
“xy 2 0 for ¢ 0 and

and

Inasmuch as the solution represents an asymptotic expansion which is
valid only in the inner layers of the plate, naturally the stress field can
not be expected to satisfy the boundary conditions on the plate faces, i.e.
at 2z = =h. The author, however, shows* in reference [2] that in the
neighborhood of the corner point additional terms** also contribute to the
same order of singularity and therefore must be accounted for.*** Moreover,
it was shown that all stresses there, inclusive of Tﬁﬁ} and 4;2, possess the
same order of singularity. He, subsequently, ventured to examine the

character of the stress singularity which prevails at the corner point, i.e.

the point where the crack front meets the free surface of the plate. After

REARINE PR SR

*See pages 669 - 671.
**This matter will also be addressed at a later time.

b 2 2
It should be pointed out that the integral representations do satisfy the
boundary conditions there and that this comment refers only to the recovery
of the complete local expansion from the integral representations.
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6
considerable effort, it was concluded that the displacements are proportional

to :1/2-2v -1/2—2v_

and similarly the stresses are proportional to o
Researchers in the field of fracture mechanics, however, were reluctant
to accept at that time the possibility of an infinite displacement fie]d*,
on the basis of physical intuition. Consequently, the results were con-
sidered to be controversial and the following legitimate and fundamental
questions were raised:
1. Is the solution of this notorious difficult problem unique and if so

under what conditions?

2. Is an infinite displacement field, in this case, admissible?

(2]

3. Does the symbolic method adopted by the author generate a

'complete' set of eigenfunctions for the solution of Navier's

equations?
| | {
The answers to the above questions were given by Prof. Calvin Wilcox.
First of all, he was successful in proving [4] that a displacement field 3

which satisfies the condition of local finite energy is unique. This of

(e

course is quite a departure from our traditional 2-D fracture mechanics i
thinking, for the displacements may now be allowed to be singular. Conse-
quently, one may not a priori assume them to be finite as it is customarily

done. In general, such an assumption makes the class of solutions too

*

Infinite displacement fields are not uncommon in the theory of linear
elasticity. For example, it is well established that the Boussinesq's,
Kelvin's and Cerruti's problems have displacement fields that behave
like uj - c~1. The reader should also be reminded that the reported
results of the crack problem correspond to the complementary solution,
i.e. the interior of the crack faces is subjected to a uniform fluid
pressure.

USRI RS T N S )

i

i
This work was carried out at the request of the author and was supported
by AFOSR Contract F4.962077.C0053 which the author had at the time.
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7
restrictive and, as a result, one may not find the complete solution to the
problem. On the other hand, the solution could very well give finite dis-
placements everywhere! Be that as it may, physical intuition should be used
with extreme caution.

Second, he was able to show [5] that the Fourier integral expressions*
representing the general solution to Navier's equations are complete and,
furthermore, the 'symbolic method' used is justifiable. In order to prove
this, he used a double Fourier integral transform in x and y and subsequently
a contour integration to recover precisely the same expressions as those
reported by Folias in [2].

Finally, it remains to determine explicitly the stress field ahead of
the crack tip and throughout the thickness of the plate. Moreover, it
would be interesting to see if the asymptotic expansion in the inner layers
of the plate matches the stress field given by equations (4) - {9).

The Corplerentary Displacement and
Stress Fields

Fror reference [3], we have the following complementary displacement

and stress fields.

(1) the displacement field:

aZH

(c) 5 2 2(m- 1) cos (¢ h) cos (s 2)

R
u m- 2‘

v

A

] \Y

Wea R

3X

+me hsin (5vh) cos (EVZ) -m: 2cos (Evh) sin (svz)}

2 * (1)
L T B
+ s B,/ - — * u H, I cos (unh)cos(unz)
n=) X
2

al 31
R 2 iy

¢ axa |y

'See Eqns. (52) - (54) of [4].
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\Y)
v.] AV Xay { 2 (m-1)cos (th) cos (B\)Z)

+ mi\h sin (E»h) cos (Evz) -mE zcos (svh) sin (8\)2) }

« a?‘H* (12)
- B "cos(~h)COS(mZ)-‘Bm_.]'I -1
oy on axay *n nttom+1 73 72
2
51 31
+ oy, 3 + ] 22 :
T mA 2
?,_Y} d
WL - A My g {(m-2)cos (8 h)sin(8 2z)
n‘-2 \);] . 2 Ay v v
- mz hsin(z h)sin(z z)-me zcos (2 h) cos (s z)] (13)
2 23
i

where for simplicity we have adopted the following definitions:

« r E- '/52*8\)2 lyl
A "H (x,y;e ) = [ — sin (sx)ds , (14)
o s /s+ 6‘,2
n * o« sn e-'/sz + (lnzly!
(-1) Ban (x,y;an) = f sin{sx) ds , {15)
o, 2 2 2 2
Ys +an /s + ap

with A and Bn as functions of £, and a respectively,

a B —F n = ],2,3,... y (]6)
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¢ = the roots of the transidental equation
sin{(2: h) = -2(sh) , (17)
\ \Y
and |
. Sy (18)
¥ I] o P(s) e sin {sx) ds

P 1, = ,'Z P(s) e'sly; cos (sx) ds (19)

1, = /. Qis) e-s;y' cos (sx) ds . (20)

3 "0 S

r ..,-:-1.1‘_"-,' ‘f‘,' B

(11)  the stress field:

] 2
7 w2 = cos (£ ) cos (¢ 2)

e

> 3 {2(m-1)cos(£vh)COS(£V2)

+m = hsin(: h)cos(e z)-m & zcos (¢ h)sin(g z)) (21) {
Vv Vv Vv

V) v V) i
+* +*
= : 53Hn 5 H,
+ ’ S om 4+ - — -
s B, 3 3" =} cos (Jnh) cos (anz)

-
o
~

I 2

b ) %1 3l
F 1 3 1 2 2 2 3
P + — - 'y + . 2z +
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= H
1 (e) . 2T 2, Wy
2G 'y s m-2 51 B, A 3% cos (svh) cos(svz)
L 33H; p M
R — \JE] A.) { ;3— - £ —a;'}{ 2(m-1) cos (th) cos (gvz)

+m « hsin(e h)cos (8 z)-mg zcos (B8 h)sin(g z)}  (22)
\Y V \YJ \Y] Vv Vv

3 * *
* “Hq 2 oM,
+ o Bpl—3 - a2y 5% ! cos(;nh) cos(anz)
n=1 5 X
) 2 3
Mrs ST uh g M ey Ml B
sy, @ 3x ax“ 3 |y|
aH
Vo) o Ty 2 ’
%, Ty 2 A = & " -8 hsin(e h)cos (D\)Z)
(23)
+ ¢ zcos (¢ h)sin(e z)7
Do L2,
IS R S — -
6 Txy TR IR A o { 2 (m-1)cos (¢ h)cos (e 2)
+m: hsin(: h)cos(g 2)-m= 2 cos (g h)sin (¢ z) }
A% \ v v v A%
3 N (24)
- 1 Bt 2——-a" 57 ) cos(ah) COS(unZ)
n=1 X 3y Y
3 2
I 313 312 2 p 9 I3 3 13
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2
© 3 H
1 (C) - 2m . \ ] .
G Txz R 5 A, :;;T B, { cos(:\h)s1n(evz)
+ g hsin (g h)sin(g z) + 5 zcos (8 _h) cos (8,2) ) (25)
*
- - a a_ €0s (a_h) sin (o 2z
n=1 " axz n . n n n n
) 2,
1. (c) _ m o .
G yz T oTm-z h A £ Sxay | cos (. h)sin(s 2)

+ ¢ hsin(s h)sin(e z) + g zcos (8 h) cos (¢ z)} (26)
v Vv AV \Y) v Vv

2*
- o H '
+ n:]Bnln Xy cos(anh)s1n(anz)

By direct substitution, it can easily be ascertained that the fore-
going complementary displacement field satisfies Navier's equations and
furthermore the corresponding stresses oz(c), sz(C)’ Tyz(c) do vanish at
the plate faces z =-h. The remaining boundary conditions:

(@ . . (© . 4

. = 1, = ; for y = Oandall x (27)-(28)
and
qy(c) = -1 : for y = 0and all x < ¢, (29)

are satisfied, if one considers the following combinations to vanish

respectively:
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_2m Do (BH") {g hsin(g h)cos (g .z)
m-2\;-I v oy ‘y=0"*"%y v v
© BHn
-8,z cos (8 h)sin(p z)} +n§1 B, (_ay')y=0
(30)
4m 7 M,
cos (;nh) cos (o.nz) Y 5o vE'l A, ("aT)y=0 = 0
for all x .
3y
2 o
— :_] A (’—-2—'—))/=0 { 2(m-1) cos (£,h) cos (&,z)
- = oX oy
+ mz hsin (s h) cos (g 2) - me zcos (evz) sin (evz) }
: L2 (o h) cos (a 2)
-z B {2 -a —=—1} _.coslah)cos(u_2z
n=] " axzay n oy "y=0 n n
3 (31)
) 3l 3
m- 1 3 2 2 2 3 _
+{-‘Z(m‘#]) ax-2 5x T m+1 ? a)(3 },Y'-'O =0
for all x ,
and
2 - '2A (i) cos (g h) cos (g 2)
m-2 1,5, 7L N ax Ty=0 Ny By
« 3
9°H oH
1 z v 2 7y - .
- m'2\=1A“{__3_ax - B Sx Vy=0 {2(m l)cos(evh)

.......
...........
A B N I VAN N BT
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S A va~w maln & e -
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3
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cos (¢ z)+ me hsin(g h)cos (g 2)-m
. v A% V

:
%
3
3
’

83H*
cos (# h)sin(e z)} + 1 B { ;-
v n=1 " ax
1 al
_ 2am 2'3 %
cos (Jnh) cos(;nz) 1o * =X
alyl
,31
1.2 %3 ‘0 .
- 2 Yoo = - ("") s !X! <C . 9
m+ 1 axza!yi y=0 2G )
i
Next, upon utilizing eq. (30) into eq. (31), one finds: after some !
rearrangement: :
2 , 3H
_.)(_2 eI A = )y=0 { 2(m-1) cos (¢ h) cos (£ 2)
-mf hsin(s h)cos (¢ z)+m £ 2 cos(f h)sin(c 2)]
v Vv \ v v Y
g aH\ X .
+m-2»;] A.‘, (_“c—y—)y=0 ! _
(33) !
- .2 « 2H
. o 2m - N . . ) . .
g "% mo2 © A_v\(a—y-)y:O[.—vhsm(:\h)cos(,vz) )
- 02 =1
.
:i - £ zcos (.-vh) sin (Evz) 13
Ef L I T I S
g = '{'2(m+])ax'2 5x T m*1 2 3}.‘/=0 ;
{
for all x .
A
\
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The problem, therefore, has been reduced to that of solving equations

(30), (32) and (33) for the complex coefficients Av, the real coefficients

R TR

*
B,» and the respective functions Hv(x,y;Bv) and Hn(x,y;an) subject to the

continuity conditions

St diib oo

jf;i = 0 ; x| > ¢ (34) X
ay !y=0 ]
<
3
, | 3
2y |y=0 0 3 x| > c . (35) :
However, before one engages into a lengthy numerical procedure for the i
solution of the system, it would be desirable to construct, if possible, the .

*
functions H (x,y;fv) and Hn(x,y;un) analytically. After considerable

mathematical manipulations it is possible to construct these functions.

A N e,

*
For example, without going into the mathematical details , H; is found to

be:
-a_lyi [, I b
2/-ncxn
-a r
N e I P
27
] ] “p | 3
I—z-(x-len){e Erf[v/un(r]' lyl)] (6)
gty , 1 1 .
e'n Erf[.c,n(r] iyt xrgs) .
" !
1
N e ]
[ e Erf[./un(rz -lyl)]) -e Erf [./qn(r2 + |yl p
9
3

*See footnote on next page.
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where we have adopted the following definitions

ry o= vo(x - c)2 + y2 (37a)
r, = v (x+ c)2 + y2 (37b)
f:; , Z _.2
; Erf (2) = — [ e dn , (38)
7T
} vo o]
g!ﬂ and the upner and lower signs refer to ;x| <c and |x| > c, respectively.
[

*For the sake of brevity and in order not to lose the reader with the long
and tedious manipulations we omit this derivation. The reader will find
jt easier to show that this expression satisfies the differential

equation:
+* *
‘ZHn aZHn 2 %
- H = 0
7 2 “n i
=X oy

(c)

the continuity condition (35), the shear boundary conditions rii) and
!
ot Tyz '

at y = 0 and for |x! > c and furthermore along the crack faces
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A similar expression may be obtained for Hv(x,y;ev) as a combination of
the function (36) and its derivatives. This step was very important for it
enables one to extract the dependence in x and y analytically rather than
numerically. In summary, therefore, the problem has now been reduced to
that of solving equations (30), (32) and (33) for the complex constant
coefficients Av and the real but constant coefficients Bn. Moreover, the
displacement and stress fields may now be expressed in terms of one summation
rather than one summation and one integral.

Although the numerical solution of these coefficients is now possible,
fror which the singularity may then be determined (at least in principle),
we believe that such procedure may not lead us to all the singularities of

s
the problem and that such information should be extracted by analytical

means.

The behavior of the solution at the corner.

e WV T T e s aa a
B
.

One of the acadamic questions that has defied researchers for a long
time is the order of the singularity that prevails at the corner point.
Thus, in order for us to study the stress distribution in the vicinity of

that point, we introduce the following function

aH
A (

(h)(n s . 2
£ (h+2) YT

Jysgeosle (h22)], (39)

y=0

"oy 8

[

in view of which the homogeneous portion of equation (33) may now be

written as

*
This is because numerical procedures tend to average local affects.

_________

......
...........
.............
.............

r 2 v
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2 (h) 2 y
2200 (e ¢ n-2) E2t 2 B (- 2) '

’

s

3

h 2 _o(h
)(h‘_‘) b+ { 2(1-v) f(h)(h- z) + (h+2) of )(h‘ Z)

2z ax2 ¥4

(M) (- 2)

2
+ 25 (h+2) }= 0; forall-h<z<h. (40)

¥ oz

We seek next the solution of the above equation in the form: K
2 ]
: M hez) = cyle-x"V2 (h-2)?% () (41) i

-
8 where i
- 0 7 - (42) ;
and g
h-2z .

Yi - ) 2 2 (43)

Vic-x) 4+ (h-2)

Substituting, therefore, eq. (41) into (40) one finds that the eguation is

satisfied provided that the function F(n) is a solution of the following

ordinary differential equation:

-l v 2o ) F e kb e it e mnd) F
(44)

+ (brF + d n3 +en) F' +af = 0

Pty Yy -J-l RO

b where

. - ‘-.-_ ..... I R N DO TG LRI e
e P \‘ .b. .A-.l. ::lh\ I‘:l L.H L'\ \ .'-1 :."- e heS
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2 |
a = 4‘\.0 (] - 2 VO) :J‘
o
b o= -6 (1+3 ) q}
d = 1202 + 20 v, + 21/8 ;
Y0 Y0 :
e = -2y (1+6~.'0) (85) - (51)
k = - 6 (]+ \"0)
_‘: 1= 4(2+3 )
P m = ‘2(]+3.0) .
¢

Finally, the solution of equation (44) can be found by the application of

the method of Frobenious, i.e.

F(-) = - C -~ ". (52)

Without going into the details, the indicial equation is found to be
(= 1) (2-2) % (6.g+2) 8z =1) + 2. (1+6y) ¢

v 8l (2= = 0, (53)

the roots of which are:

r-2 0 double root
b= (54)
L ] - 2 VO

INLOCAN AT AU 7 an i S Sra e hiMalet - guunstovsnanse, QN

——
A) l.l « Y

T

20t
LRl
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*
One concludes, therefore, that

1-v

a2y = cple-0M (e s (-7 KW L, (55)

where H(n) represents an even power series in n the behavior of which for
small values of n, i.e. around the point n = 0, is shown in fig. 2. A

*%
similar asymptotic expansion around the points n = + 1 shows that

W) = (-3 oo (- A" (36)
n=0
with 4 = %. The behavior of H around the point n =-1, for example, is

shown in fig. 3. It should be emphasized that there exist no singular

points of any kind between zero and,one. Hence the function H{n), in
between, represents a smooth curve. Pending a further analytical or
numerical study of H(-) the function has been approximated by the dotted

*hKx
curve,

(h)

In view of eq. (55), the function of f h+2z) has now been
determined. While there are many ways that one can now use to complete the
rest of the probler., the authors suggest the following method in order to
extract an explicit analytical form of the solution. First, one needs to

construct a harmonic function (x,y,h+ z) such that

*
The reader should note that this is only one out of the three
solutions and that the double root leads to a logarithmic solution.
* &

The reader should note that the other two values of y = 0 and = %
correspond to the logarithmic and the g = 1-2vg solutions,
respectively.

Tk

In the event that a numerical scheme is used, the matching of the two

curves must be done with care.
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v(x,ysh+2z) = ¢ A H cos ev(h+ 2) (57)
v

and that the following boundary condition be satisfied
3y . ¢(h) , £(P)
5 f + f R (58)

where f(p) represents the particular solution of equation (40) and which can
easily be obtained. This, however, is Newman's problem which in principle
can be solved. To obtain, however, an explicit solution requires some
effort. Be that as it may, the authors believe that this is feasible for
there exists a considerable amount of knowledge related to the behavior of

*
this type of a function.

*For example, see eq. (36).

Sl Bk b A A ASESL i 0. b
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Discussion of the results

In order for us to see the form of the singularity which prevails at
the vicinity of the corner point, we introduce the local spherical

coordinates defined by the transformation:

C-Xx = ¢ sin 2cos ¢
y = ¢ sin ¢ sin ¢ (59)
h-2 = ; cos 6,

which lead to*

3_
L T R A

H (cos #) , (60)
v sin &

fron which it is evident that the displacements are proportional to
V252 ang the stresses proportional to V2 -2y e observe, there-
fore, that this is the same result as that reported in reference [2].

Let us next examine the behavior of the function f in the inner layers

of the plate, i.e. for all x - c = € << h - z

1
(h) 6 2-2¢ £ v
f (h+2z) = — (h-2) {1 + ———} H ( 2 )
/e (h-2)° {, ﬁ
-2
(61)
Co 2-2¢
= = (h-2)TVH (1) +0 (),
3

which again leads to the same type of results as those reported in ref. [2].
We now have, therefore, a better understanding of the type of expansions

that equations (4) - (9) represent.

*The reader should recall that the function f(h) is defined on the plane
y = 0.
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It would be appropriate at this time to reexamine the question as to
whether boundary conditions ng)’Tig) and rgi)can indeed be satisfied at the
*
plate faces. An examination of these stresses shows that they can be

expressed in terms of

;2. .
(h - 2z) —> and Y
¢z
*x
and similar expressions. The former is automatically satisfied by virtue

of the factor (h-2z). The latter, after the odd derivative is taken, a
factor (h-2) is kicked out thus forcing it to vanish. The reader should
recall that f(h> is an even function of (h-2z). All other terms, which are
of a lesser order, are negated by the particular solution [f(P)]. One
corncludes, therefore, that such an expansion can indeed satisfy the

boundary conditions at the plate faces and, as a result, is admissible.

It would be interesting next to compute the displacement function

v(»x,0,2) in the neighborhood of the corner point. Without going into the

* %k
mathe~atical details one finds after some rearrangement that

: V(c) = CO‘ C - X (‘ . G(ﬁ) + - (62)
}7" where

.

o

- 6l-) L8l - ) P (- Al e vl H e

(63)
N

- $ L3 - 4 g)ed + (Byg - Pnln ¢ (oD ) oW

. *The reader should note that there was never a question as to whether the
solution in the integral representation form did just that.

R/ R 4 4

t"‘
. .
PR LS

**The reader should also take into account eq. (30).

*k W
**The ... here indicate terms of higher order.
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A plot of the function G{-) is given in Fig. 3 for various Poisson's
ratios. The value of n = 0 corresponds to the free surface while n = -1
corresponds to the crack front. The constant CO is proportional to the
applied stress and a function of Poisson's ratio. Thus, although the
amplitude of v may change, the trend will remain the same. An examination
of the curve also shows that as one moves from the crack front to the free
surfaces of the plate the crack widens, a result that meets our expecta-
tions.

Notice also that for zero Poisson's ratio the function G is constant

and the displacement now becomes

1iN‘\(C)(A,O,Z) = 11n‘CO . const. v c - x . (64)

v-+( v=0C
This result also meets our expectations for it represents an exact
solution.

Let us next exanine the behavior of the displacement in the neighbor-
hood of the crack front, i.e. when : = -1, The function H(r,) then behaves

i *
like

which then leads to

v o const. Ve-2y Vsin () _nz)-1/4 + e
(65)
= const. /2% 4 ...
_—
See eq. (56)
.'.':.;.:.‘::"'j'-.v.’ e -: . ~ . P e ‘ “;"‘::}\*\..-
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Conclusions

As a result of this study, the authors draw the following conclusions.
First of all the displacements in the neighborhood of the corner point

are at least proportional to

v BT ) (66)

and that the functions fi(a,¢) do not vanish.

Second, while it is true that for Poisson's ratios greater* than 1/4
the displacements are infinite, the local strain energy however remains
finite. Consequently, such a solution is admissible and, if it represents

(4]

'a solution', it is the only solution Infinite displacements are not
new to the field of linear elasticity. For example, Cerruti's problem
leads to higher order singularities (displacements ~ 1/c). It should be
emphasized that the problem which the authors have solved is that of the
complementary 3-D Griffith crack, where the crack faces now are subjected
to a uniform internal pressure g

Third, the solution is not separable in spherical coordinates. Thus
solutions that do invoke such an assumption may or may not lead to the
correct or complete solution of the problem.

Fourth, physically what the solution really shows is that linear
theory is inadequate in predicting the actual behavior of the material at
such corner points. This, however, should not be interpreted as if no
practical information can be extracted from such a solution. An example of
this is the 2-D solution which predicts infinite stresses at the base of the :
crack.

Fifth, the material cannot sustain such large stresses at the corner

and, as a result, it must relax. This relaxation is accomplished in two

*For v = 1/4, the displacements are ~ p

1/2-2(1/4) o®. In this case u ~ Inp. i
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ways. Initially the material yields, thus forming the shear lips, and

A simultaneously it fractures, thus forming the well known 'tunneling effect'.
The authors believe that this fracture initiates first at the corner,

where the material tries to smooth out the 90° angle and subsequently its
crack advances in the manner shown on fig. 4.

Sixth, present experimental results may not be used to prove or dis-
prove a solution for the following reasons. In experimental work a crack
is usually introduced by mechanical means and is subsequently fatigued in
order to attain a sharp crack tip. The process of fatigue, however, will
undoubtedly smooth out these sharp corners thus altering the geometry of
the problem. Moreover, if the displacements are indeed very large, the
material will yield and the shear 1ips will be formed. 1In such a case,

Af;i the principle of superposition is no longer valid and any such comparison
) may be meaningless, unless the load in the experimental procedure is
applied to the crack faces in which case one then compares 'complementary'
problers.

Seventh, it has been observed experimentally that on the free surfaces
of a plate and around the neighborhood of the crack tip, a small dip
appears during the process of deformation. This dip substantiates the fact
that, whenever a load is applied to the plate, it forces the material to
ch smooth out the ninety degree corner. Moreover, the larger the load is the
more noticeable the dip is. As in the 2-D case, large forces of atomic or
molecular attraction of the order of the "theoretical strength" prevail at
such corners. These "cohesive forces", attempting to smooth out the right

angle, pull the material towards the center of the plate thus forcing the

crack front to 'buckle' and tunnel its way into the center of the plate.




Eighth, the authors believe that there exist two different types of
solution expansions that intermix to form the various singularities of
the problem. This phenomenon, coupled with the fact that the solution
is not separable in spherical coordinates may offer an explanation as to
why other authors obtained, numerically, results of a lesser order
singularity.

Engineering fracture mechanics can deliver the methodology to com-
pensate the inadequacies of conventional design concepts that were based
on tensile strength or yield strength. While such criteria are adequate
for many engineering structures, they are insufficient when the likelihood
of cracks exists. Now, after approximately three decades of development,
fracture mechanics has become a useful tool in design, particularly with
high strength materials. Interestingly enough, this advancement has been
based primarily on the 2-D solution of the Griffith crack problem. We
believe that the 3-D solution of the Griffith crack problem will not only
enable us to understand the mechanism of fracture propagation better, but
it will also expand our horizons for future research and, hopefully, will
contribute to the advancement of the field of fracture mechanics to higher
levels of safe design against fracture. It is for these reasons that this
study was undertaken.
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